Learning Distributed Representations for Multilingual Text Sequences

نویسندگان

  • Hieu Pham
  • Thang Luong
  • Christopher D. Manning
چکیده

We propose a novel approach to learning distributed representations of variable-length text sequences in multiple languages simultaneously. Unlike previous work which often derive representations of multi-word sequences as weighted sums of individual word vectors, our model learns distributed representations for phrases and sentences as a whole. Our work is similar in spirit to the recent paragraph vector approach but extends to the bilingual context so as to efficiently encode meaning-equivalent text sequences of multiple languages in the same semantic space. Our learned embeddings achieve state-of-theart performance in the often used crosslingual document classification task (CLDC) with an accuracy of 92.7 for English to German and 91.5 for German to English. By learning text sequence representations as a whole, our model performs equally well in both classification directions in the CLDC task in which past work did not achieve.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MultiVec: a Multilingual and Multilevel Representation Learning Toolkit for NLP

We present MultiVec, a new toolkit for computing continuous representations for text at different granularity levels (word-level or sequences of words). MultiVec includes Mikolov et al. [2013b]’s word2vec features, Le and Mikolov [2014]’s paragraph vector (batch and online) and Luong et al. [2015]’s model for bilingual distributed representations. MultiVec also includes different distance measu...

متن کامل

Multilingual Distributed Representations without Word Alignment

Distributed representations of meaning are a natural way to encode covariance relationships between words and phrases in NLP. By overcoming data sparsity problems, as well as providing information about semantic relatedness which is not available in discrete representations, distributed representations have proven useful in many NLP tasks. Recent work has shown how compositional semantic repres...

متن کامل

Learning Distributed Representations of Phrases

Recent work in Natural Language Processing has focused on learning distributed representations of words, phrases, sentences, paragraphs and even whole documents. In such representations, text is represented using multi-dimensional vectors and similarity between pieces of text can be measured using similarity between such vectors. In this project I focus my attention on learning representations ...

متن کامل

Distributed representations for compositional semantics

The mathematical representation of semantics is a key issue for Natural Language Processing (NLP). A lot of research has been devoted to finding ways of representing the semantics of individual words in vector spaces. Distributional approaches—meaning distributed representations that exploit co-occurrence statistics of large corpora—have proved popular and successful across a number of tasks. H...

متن کامل

Wiktionary-Based Word Embeddings

Vectorial representations of words have grown remarkably popular in natural language processing and machine translation. The recent surge in deep learning-inspired methods for producing distributed representations has been widely noted even outside these fields. Existing representations are typically trained on large monolingual corpora using context-based prediction models. In this paper, we p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015